Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 8(9): 1282-1287, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37470115

RESUMO

We report spectroscopic evidence for the ultrafast trapping of band edge excitons at defects and the subsequent generation of defect-localized coherent phonons (CPs) in monolayer MoSe2. While the photoluminescence measurement provides signals of exciton recombination at both shallow and deep traps, our time-resolved pump-probe spectroscopy on the sub-picosecond time scale detects localized CPs only from the ultrafast exciton trapping at shallow traps. Based on occupation-constrained density functional calculations, we identify the Se vacancy and the oxygen molecule adsorbed on a Se vacancy as the atomistic origins of deep and shallow traps, respectively. Establishing the correlations between the defect-induced ultrafast exciton trapping and the generation of defect-localized CPs, our work could open up new avenues to engineer photoexcited carriers through lattice defects in two-dimensional materials.

2.
Nat Commun ; 13(1): 4279, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879336

RESUMO

In transition metal dichalcogenides, valley depolarization through intervalley carrier scattering by zone-edge phonons is often unavoidable. Although valley depolarization processes related to various acoustic phonons have been suggested, their optical verification is still vague due to nearly degenerate phonon frequencies on acoustic phonon branches at zone-edge momentums. Here we report an unambiguous phonon momentum determination of the longitudinal acoustic (LA) phonons at the K point, which are responsible for the ultrafast valley depolarization in monolayer MoSe2. Using sub-10-fs-resolution pump-probe spectroscopy, we observed coherent phonons signals at both even and odd-orders of zone-edge LA mode involved in intervalley carrier scattering process. Our phonon-symmetry analysis and first-principles calculations reveal that only the LA phonon at the K point, as opposed to the M point, can produce experimental odd-order LA phonon signals from its nonlinear optical modulation. This work will provide momentum-resolved descriptions of phonon-carrier intervalley scattering processes in valleytronic materials.

3.
Nanoscale ; 12(44): 22487-22494, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33169781

RESUMO

Although single-layer transition-metal dichalcogenides with novel valley functionalities are a promising candidate to realize valleytronic devices, the essential understanding of valley depolarization mechanisms is still incomplete. Based on pump-probe experiments performed for MoSe2 and WSe2 monolayers and corroborating analysis from density functional calculations, we demonstrate that coherent phonons at the K-point of the Brillouin zone can effectively mediate the valley transfer of electron carriers. In the MoSe2 monolayer case, we identify this mode as the flexural acoustic ZA(K) mode, which has broken inversion symmetry and thus can enable electron spin-flip during valley transfer. On the other hand, in the monolayer WSe2 case where spin-preserving inter-valley relaxations are preferred, coherent LA(K) phonons with even inversion symmetry are efficiently generated. These findings establish that while the specifics of inter-valley relaxations depend on the spin alignments of energy bands, the K-point phonons should be taken into account as an effective valley depolarization pathway in transition metal dichalcogenide monolayers.

4.
J Phys Chem Lett ; 11(10): 3773-3781, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32330388

RESUMO

Methylammonium lead trihalide perovskites CH3NH3PbX3 (X = Cl, Br, and I) have recently attracted huge attention as a promising candidate for highly efficient solar cell absorber materials. To understand the physical properties of halide perovskites, we investigated the CH3NH3PbCl3 single crystal by Raman scattering spectroscopy from 80 K to room temperature. Benchmarking the phonon modes and their Raman activities obtained by density functional calculations, we successfully assign the molecular vibrations of methylammonium in the frequency range from 400 to 3300 cm-1. In the temperature-dependent Raman scattering spectra, the internal vibrational modes of the CH3NH3+ cation are observed in the frequency range above 400 cm-1 and a number of peaks among them show characteristic changes that reflect the phase transition occurring at about 160 K in CH3NH3PbCl3. A noticeable Raman peak at 2900 cm-1 persists in a wide range of temperature, suggesting the existence of microcrystalline methylammonium chloride possibly left on the crystal surface from the growth process or spontaneously formed after synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...